Math Incoming 6th Grade Summer Break Packet
June 17- August 19, 2019

Expectations
- Please complete 2 assignments per week.
- Use the examples to help you. Show your work. Box your answers. Use pencil **ONLY!**

<table>
<thead>
<tr>
<th>Suggested Date</th>
<th>Assignment</th>
<th>Rubric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1. Fractions: Equivalent Fractions (pg. 1)</td>
<td>1</td>
</tr>
<tr>
<td>June 17-21</td>
<td>2. Fractions: Simplest Form (pg. 2)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3. Fractions: Least Common Multiple (pg. 3)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4. Fractions: Writing Mixed Numbers (pg. 4)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5. Fractions: Writing Improper Fractions (pg. 5)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6. Fractions: Multiplication (pg. 6)</td>
<td>1</td>
</tr>
<tr>
<td>Week 2</td>
<td>7. Fractions: Multiplying a Fraction by a Whole Number (pg. 7)</td>
<td>1</td>
</tr>
<tr>
<td>June 24-28</td>
<td>8. Fractions: Multiplication Practice (pg. 8a and 8b)</td>
<td>1</td>
</tr>
<tr>
<td>Week 3</td>
<td>9. Reciprocals (pg. 9)</td>
<td>1</td>
</tr>
<tr>
<td>June 1-5</td>
<td>10. Dividing by a Fraction (pg. 10)</td>
<td>1</td>
</tr>
<tr>
<td>Week 4</td>
<td>11. Adding and Subtracting Decimals (pg. 11)</td>
<td>1</td>
</tr>
<tr>
<td>July 8-12</td>
<td>12. Multiplying Decimals (pg. 12)</td>
<td>1</td>
</tr>
<tr>
<td>Week 5</td>
<td>13. Multiplying Decimals: Multiplying a Decimal by a Decimal (pg. 13)</td>
<td>1</td>
</tr>
<tr>
<td>July 15-19</td>
<td>14. Geometry: Perimeter and Area (pg. 14)</td>
<td>1</td>
</tr>
<tr>
<td>Week 6</td>
<td>15. Student Reflection Form (pg. 15)</td>
<td>1</td>
</tr>
<tr>
<td>July 22-26</td>
<td>16. Parent/Guardian Letter (pg. 16)</td>
<td>1</td>
</tr>
<tr>
<td>Week 7</td>
<td>Take this time to complete any work in this packet that is not yet complete. It needs to be complete by August 19, 2019 at 8:30 am.</td>
<td>1</td>
</tr>
<tr>
<td>July 29- August 2</td>
<td>Total Habits Score: _____/16</td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>IMPORTANT DATES</td>
<td></td>
</tr>
<tr>
<td>July 29- August 2</td>
<td>Summer Jam for NEW to Alpha students begins on: August 12, 2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer Jam for RETURNING students begins on: August 14, 2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular School Begins on: August 19, 2019</td>
<td></td>
</tr>
</tbody>
</table>

My child ___________________________ has completed his/her math summer break packet. I have also completed the parent/guardian letter on the last page of this packet.

Parent Signature: ___________________________
Dear Soon to Be 6th Graders and Parents of Soon to Be 6th Graders,

Congratulations on making it through your 5th grade year. I am looking forward to working with you next year in the sixth grade! What you learn in the 6th grade will build on the skills you have learned in the 5th grade.

To help you keep your skills strong, I have created a summer break packet to help you keep your brains sharp so that you are ready to learn all the things I have prepared for you in the 6th grade.

Each week you have been assigned TWO math assignments per week to complete. You may choose when to do it. You complete this work in whichever way best suits your style. You may do the problems for the week in one day or you may spend 30-60 minutes twice a week completing each problem. All I ask is that you do not leave the assignment until the week or even the day before school begins. Trust me, you will NOT complete it!

This summer break work is meant for you to maintain your skills. You may use siblings, parents, and most importantly your brain to complete the assignments. You must show all of your work and the work should be done in pencil.

Lastly, please complete the student evaluation/reflection form and have your parent/guardian complete the parent reflection when you complete all assignments. These can be found at the end of the summer break work.

Good luck and have a fabulous summer! I cannot wait to see you in the fall! We are going to have a fabulous 6th grade year!

Sincerely,

Mrs. Wright
6th Grade Math and Science Teacher
bwright@alphapublicschools.org
(408) 766-4097
Fractions: Equivalent Fractions

Example: \[\frac{4}{6} = \frac{4 \times 2}{6 \times 2} = \frac{8}{12} \]
\[\frac{4}{6} = \frac{4 \times 3}{6 \times 3} = \frac{12}{18} \]
\[\frac{4}{6} = \frac{4 \div 2}{6 \div 2} = \frac{2}{3} \]

So, \(\frac{4}{6}, \frac{8}{12}, \frac{12}{18}, \) and \(\frac{2}{3} \) are all equivalent fractions.

Equivalent Fraction Rule:
If a numerator and a denominator are each multiplied or divided by the same number, then the new fraction represents the same number.

For each fraction, write two equivalent fractions.

1. \(\frac{2}{4} = \frac{2}{12} = \frac{8}{14} = \frac{4}{18} \)

2. \(\frac{2}{16} = \frac{10}{12} = \frac{8}{9} = \frac{4}{10} \)

Write an equivalent fraction.

5. \(\frac{1}{11} = \frac{3}{33} \quad \frac{1}{20} = \frac{4}{40} \quad \frac{4}{16} = \frac{32}{32} \)

6. \(\frac{3}{18} = \frac{36}{36} \quad \frac{12}{18} = \frac{54}{54} \quad \frac{1}{30} = \frac{3}{90} \)
Fractions: Simplest Form

Example: Write the fraction \(\frac{42}{56} \) in simplest form.

Step 1
Find the GCF of the numerator and denominator.

42: 1, 2, 3, 6, 7, 14, 21, 42
56: 1, 2, 4, 7, 8, 14, 28, 56

GCF = 14

Step 2
Divide the numerator and denominator by their GCF.

\(\frac{42}{56} \div \frac{14}{14} = \frac{3}{4} \)

Write each fraction in simplest form. Circle your answer.
If a fraction is already in simplest form, just write the fraction.

1. \(\frac{4}{6} \) \(\frac{5}{10} \) \(\frac{9}{15} \) \(\frac{8}{14} \) \(\frac{2}{15} \)

3. \(\frac{6}{21} \) \(\frac{22}{42} \) \(\frac{28}{30} \) \(\frac{15}{32} \) \(\frac{35}{50} \)

5. \(\frac{34}{59} \) \(\frac{22}{88} \) \(\frac{28}{28} \) \(\frac{18}{90} \) \(\frac{75}{80} \)
Fractions: Least Common Multiple

The least common multiple (LCM) is the smallest number that is a multiple of two or more numbers.

Example: Find the LCM of 6 and 8.
- List some multiples of 6 and 8.
- Circle the common multiples.
- Write the least common multiple (LCM).

| Multiples of 6: 6, 12, 18, 24, 30, 36, 42, 48 |
| Multiples of 8: 8, 16, 24, 32, 40, 48 |
| LCM = 24 |

Find the least common multiple (LCM) of each pair of numbers.

1. 6:
 2:
 LCM:____

2. 5:
 3:
 LCM:____

3. 8:
 12:
 LCM:____

4. 12:
 20:
 LCM:____

Find the least common multiple (LCM) of each set of numbers.

5. 6:
 5:
 15:
 LCM:____

6. 8:
 10:
 20:
 LCM:____
Fractions: Writing Mixed Numbers

A mixed number is made up of a whole number and a fraction. A mixed number is a number greater than 1 that is between two whole numbers.

\[\text{whole number} \rightarrow 3 \frac{1}{2} \leftarrow \text{fraction} \]

\(3 \frac{1}{2}\) is the same as \(3 + \frac{1}{2}\)

An improper fraction has a numerator that is greater than or equal to the denominator. An improper fraction is greater than or equal to 1.

\[\text{Improper fraction} \rightarrow \frac{7}{2} = 3 \frac{1}{2} \leftarrow \text{mixed number} \]

Example:
Write \(\frac{10}{4}\) as a mixed number.
The fraction bar stands for "divided by." So, \(\frac{10}{4}\) means "10 divided by 4."

Think: How many times does 4 go into 10?
Four goes into ten 2 times, with 2 remaining.
So, \(\frac{10}{4} = 2 \frac{2}{4} = 2 \frac{1}{2}\)

Write each fraction as a whole number or a mixed number.

1. \(\frac{4}{3}\) \(\frac{5}{2}\) \(\frac{25}{5}\) \(\frac{17}{12}\) \(\frac{26}{3}\)

3. \(\frac{28}{3}\) \(\frac{51}{8}\) \(\frac{60}{9}\) \(\frac{60}{12}\) \(\frac{53}{8}\)
Fractions: Writing Improper Fractions

Write $5 \frac{2}{5}$ as an improper fraction.

Think: $5 \frac{2}{5} = 5 + \frac{2}{5} = \frac{25}{5} + \frac{2}{5} = \frac{27}{5}$

$5 \times \frac{2}{5} = 25$

$25 + 2 = 27$

$5 \frac{2}{5} = \frac{27}{5}$

Rename $\frac{3}{5}$ as a fraction with a denominator of 5.

$3 = \frac{15}{5}$

Multiply the 3 and the 5 to find the numerator.

My goodness, these fractions are improper!

Write each mixed number as a reduced improper fraction.

1. $8 \frac{2}{3} \quad 5 \frac{2}{3} \quad 2 \frac{9}{16} \quad 4 \frac{3}{8}$

3. $10 \frac{2}{5} \quad 11 \frac{1}{11} \quad 1 \frac{7}{16} \quad 8 \frac{8}{12}$

Write each whole number as an improper fraction.

5. $1 = \frac{5}{5} \quad 1 = \frac{12}{12} \quad 4 = \frac{2}{2} \quad 6 = \frac{4}{4}$

7. $18 = \frac{3}{3} \quad 11 = \frac{5}{5} \quad 13 = \frac{2}{2} \quad 15 = \frac{5}{5}$
Fractions: Multiplication

Step 1
Multiply the numerators.
Multiply the denominators.

\[
\frac{3}{4} \times \frac{2}{8} = \frac{3 \times 2}{4 \times 8} = \frac{6}{32}
\]

Step 2
Write the fraction in simplest form.

\[
\frac{6}{32} \div \frac{2}{32} = \frac{3}{16}
\]

Multiply. Write each fraction in simplest form.

1. \(\frac{1}{8} \times \frac{1}{5} = \)
 \(\frac{1}{4} \times \frac{1}{7} = \)
 \(\frac{1}{12} \times \frac{1}{8} = \)
 \(\frac{1}{15} \times \frac{1}{10} = \)

2. \(\frac{5}{6} \times \frac{4}{5} = \)
 \(\frac{2}{3} \times \frac{7}{6} = \)
 \(\frac{7}{9} \times \frac{8}{9} = \)
 \(\frac{9}{10} \times \frac{2}{3} = \)

3. \(\frac{7}{10} \times \frac{3}{5} = \)
 \(\frac{2}{7} \times \frac{10}{14} = \)
 \(\frac{4}{6} \times \frac{12}{18} = \)
 \(\frac{4}{5} \times \frac{10}{12} = \)
Fractions: Multiplying a Fraction by a Whole Number

Step 1
Write the whole number as a fraction.
\[
\frac{2}{3} \times 4 = \frac{2}{3} \times \frac{4}{1}
\]

Step 2
Multiply the numerators.
Multiply the denominators.
\[
\frac{2}{3} \times \frac{4}{1} = \frac{2 \times 4}{3 \times 1} = \frac{8}{3}
\]

Step 3
Change the fraction to a mixed number whose fraction is in simplest form.
\[
\frac{8}{3} = 2 \frac{2}{3}
\]

Any whole number can be turned into a fraction by writing a 1 as the denominator.

Multiply. Write each fraction in simplest form.

1. \[
\frac{1}{15} \times 5 = \quad \frac{5}{14} \times 7 = \quad \frac{1}{16} \times 8 = \quad \frac{7}{12} \times 3 =
\]
2. \[
\frac{9}{12} \times 3 = \quad \frac{4}{18} \times 6 = \quad \frac{5}{15} \times 10 = \quad \frac{4}{12} \times 12 =
\]
3. \[
3 \times \frac{4}{15} = \quad 5 \times \frac{10}{12} = \quad 5 \times \frac{3}{6} = \quad 4 \times \frac{5}{16} =
\]
Fractions: Multiplication Practice *(Please show your work on the next page & record answers)

A \(\frac{1}{4} \times \frac{8}{9} = \) ______ J \(2 \frac{1}{6} \times \frac{8}{9} = \) ______ S \(\frac{2}{3} \times 2 \frac{3}{5} = \) ______

B \(\frac{7}{8} \times \frac{6}{13} = \) ______ K \(3 \frac{3}{8} \times \frac{7}{9} = \) ______ T \(1 \frac{1}{8} \times \frac{4}{7} = \) ______

C \(\frac{1}{3} \times \frac{9}{11} = \) ______ L \(7 \frac{1}{2} \times 1 \frac{3}{8} = \) ______ U \(4 \times 6 \frac{1}{9} = \) ______

D \(\frac{8}{13} \times \frac{2}{7} = \) ______ M \(\frac{5}{9} \times \frac{3}{5} = \) ______ V \(1 \frac{12}{13} \times \frac{1}{2} = \) ______

E \(\frac{2}{3} \times \frac{1}{12} = \) ______ N \(\frac{5}{8} \times \frac{3}{5} = \) ______ W \(\frac{3}{4} \times 4 \frac{3}{5} = \) ______

F \(\frac{10}{13} \times \frac{1}{10} = \) ______ O \(\frac{5}{6} \times \frac{9}{10} = \) ______ X \(1 \frac{3}{5} \times 2 = \) ______

G \(1 \frac{4}{5} \times \frac{5}{6} = \) ______ P \(\frac{4}{9} \times \frac{5}{11} = \) ______ Y \(3 \frac{1}{4} \times \frac{2}{9} = \) ______

H \(\frac{4}{9} \times \frac{1}{14} = \) ______ Q \(\frac{1}{5} \times \frac{10}{11} = \) ______ Z \(\frac{5}{7} \times 3 \frac{2}{5} = \) ______

I \(2 \frac{7}{8} \times 1 \frac{1}{2} = \) ______ R \(\frac{2}{3} \times \frac{5}{7} = \) ______

Below are the titles of four "BOOKS NEVER WRITTEN." To decode the names of their authors, do the exercises above, and find your answer in the code below. Each time the answer appears in the code, write the letter of that exercise above it. Keep working, and you will decode the names of all four authors. Write on!

BOOKS NEVER WRITTEN

We've Got to Stop Meeting Like This by

Scuba Diving Safety by

Honesty Is the Best Policy by

Friendly Insects by
Fractions: Multiplication Practice Workspace

(Use this workspace to show your calculations, then solve the riddle for this worksheet!

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now that you have shown your work for these problems, solve the riddle on the previous page!

Good Luck! ☺

Show your work for problems on previous page.
Reciprocals

Two numbers are reciprocals of each other when their product is 1.

\(\frac{2}{3}\) and \(1 \frac{1}{2}\) are reciprocals, because \(1 \frac{1}{2} = \frac{3}{2}\) and \(\frac{2}{3} \times \frac{3}{2} = \frac{6}{6}\) or 1.

\(1 \frac{3}{4}\) and \(\frac{4}{7}\) are reciprocals, because \(1 \frac{3}{4} = \frac{7}{4}\) and \(\frac{7}{4} \times \frac{4}{7} = \frac{28}{28}\) or 1.

To find the reciprocal of a fraction, reverse the numerator and the denominator.

Example: Find the reciprocal of \(\frac{1}{8}\).

The reciprocal of \(\frac{1}{8}\) is \(\frac{8}{1}\), or 8.

Find the reciprocal of 15.

- First write 15 as a fraction. \(15 = \frac{15}{1}\)
- Then reverse the numerator and denominator to find the reciprocal. \(\frac{1}{15}\)
- Check: \(\frac{15}{1} \times \frac{1}{15} = 1\)

Find the reciprocal of \(4 \frac{1}{3}\).

- First write \(4 \frac{1}{3}\) as an improper fraction. \(4 \frac{1}{3} = \frac{13}{3}\)
- Then reverse the numerator and denominator. \(\frac{3}{13}\)
- Check: \(\frac{13}{3} \times \frac{3}{13} = 1\)

Find the reciprocal of each number.

1. \(\frac{11}{5}\) 2. \(\frac{1}{4}\) 3. \(\frac{9}{4}\) 4. \(\frac{3}{10}\) 5. \(8 \frac{2}{3}\)

3. \(\frac{3}{4}\) 4. \(\frac{9}{4}\) 5. \(7 \frac{5}{8}\) 6. \(1\)

5. \(\frac{1}{3}\) 6. \(22\) 7. \(\frac{10}{7}\) 8. \(2 \frac{1}{8}\) 9. \(9 \frac{7}{8}\)
Dividing by a Fraction

To find \(\frac{4}{5} \div \frac{3}{4} \), multiply \(\frac{4}{5} \) by the reciprocal of \(\frac{3}{4} \).

Reciprocals

Rewrite \(\frac{4}{5} \div \frac{3}{4} \) as \(\frac{4}{5} \times \frac{4}{3} \).

Then multiply and simplify: \(\frac{4 \times 4}{5 \times 3} = \frac{16}{15} = 1 \frac{1}{15} \)

So \(\frac{4}{5} \div \frac{3}{4} = 1 \frac{1}{15} \)

Complete.

1. \(\frac{7}{2} \div \frac{1}{2} = \frac{7}{2} \times \frac{2}{1} = \frac{4}{3} \div \frac{2}{3} = \frac{6}{4} \div \frac{3}{4} = \frac{6}{4} \times \frac{4}{3} = \)

2. \(\frac{9}{2} \div \frac{1}{3} = \frac{8}{3} \div \frac{2}{5} = \frac{15}{4} \div \frac{3}{7} = \frac{15}{4} \times \frac{7}{3} = \)

Divide. Write each quotient in simplest form.

3. \(\frac{5}{6} \div \frac{5}{9} = \frac{3}{8} \div \frac{3}{4} = \frac{3}{4} \div \frac{5}{2} = \frac{4}{5} \div \frac{4}{3} = \)

5. \(\frac{5}{4} \div \frac{1}{2} = \frac{7}{8} \div \frac{3}{5} = \frac{7}{9} \div \frac{2}{3} = \frac{4}{7} \div \frac{1}{2} = \)

7. \(\frac{14}{3} \div \frac{4}{21} = \frac{9}{10} \div \frac{1}{5} = \frac{7}{8} \div \frac{21}{40} = \frac{4}{3} \div \frac{2}{5} = \)
Adding and Subtracting Decimals

Adding and subtracting decimals is like adding and subtracting whole numbers.

Step 1
Line up the decimal points.
Add or subtract as you would with whole numbers.

<table>
<thead>
<tr>
<th>Add.</th>
<th>8.25</th>
<th>+ 7.62</th>
<th>15.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.25 + 7.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2
Write the decimal point in the answer.

<table>
<thead>
<tr>
<th>Subtract.</th>
<th>6.10</th>
<th>17.05</th>
<th>- 11.51</th>
<th>5.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.05 - 11.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add or subtract.

1. 7.59 + 2.09 = 9.68
 $4.88 + 6.76 = 11.64
 $25.90 + 34.80 = 60.70
 157.8 + 30.1 = 187.9
 83.041 + 5.226 = 88.267

3. 3.041 + 5.226 + 0.451 = 8.718
 $15.08 + 46.09 + 145.73 = 217.80
 $35.33 + 19.38 + 10.94 = 65.65
 5.001 + 64.893 + 158.116 = 228.004
 145.2 + 452.8 + 68.4 = 666.4

5. 153.71 + 1.42 = 155.13
 61.108 + 6.225 = 67.333
 49.22 + 5.81 + 4.85 = 59.88

Remember to line up the decimal points.
Multiplying Decimals

Multiply 32 x 0.43

Step 1
Multiply the factors as if the decimal point weren't there.

\[
\begin{align*}
32 \\
\times 0.43 \\
96 \\
+ 1280 \\
\hline
1376
\end{align*}
\]

Step 2
Count the number of decimal places. Then put the decimal point in the product.

\[
\begin{align*}
32 & \leftarrow 0 \text{ decimal places} \\
\times 0.43 & \leftarrow 2 \text{ decimal places} \\
96 & \\
+ 1280 & \\
\hline
13.76 & \leftarrow 2 \text{ decimal places in all}
\end{align*}
\]

Remember:
Count the decimal places to the right of the decimal.

Find each product.

1. \[\begin{align*}
0.4 \times 6 & = 2.4 \\
0.9 \times 3 & = 2.7 \\
0.12 \times 7 & = 0.84 \\
4.9 \times 8 & = 39.2
\end{align*} \]

2. \[\begin{align*}
4.5 \times 3 & = 13.5 \\
2.81 \times 4 & = 11.24 \\
1.76 \times 5 & = 8.8 \\
3.03 \times 6 & = 18.18
\end{align*} \]

3. \[\begin{align*}
2.8 \times 34 & = 95.2 \\
6.2 \times 13 & = 80.6 \\
3.7 \times 65 & = 239.5 \\
0.17 \times 14 & = 2.38
\end{align*} \]

4. \[\begin{align*}
0.52 \times 26 & = 13.52 \\
0.208 \times 21 & = 4.368 \\
0.836 \times 52 & = 43.368 \\
0.92 \times 27 & = 24.84
\end{align*} \]
Multiplying Decimals: Multiplying a Decimal by a Decimal

Remember: Multiply as you would with whole numbers. Add up the number of decimal places in both factors. The answer will have the total number of decimal places in the factors.

Multiply 1.4×0.2

1.4 ← 1 decimal place

0.2×1 decimal place

$0.28 ← 2$ decimal places

Multiply 2.53×3.1

2.53 ← 2 decimal places

3.1×1 decimal place

253

$7590 + 3$ decimal places in all

Seven point eight four three

Multiply.

1. $0.7 \times 0.3 = 0.21$

$0.4 \times 0.6 = 0.24$

$0.54 \times 5.4 = 2.9$

2. $8.4 \times 0.7 = 5.88$

$0.6 \times 0.12 = 0.072$

$0.9 \times 0.2 = 0.18$

$0.12 \times 0.22 = 0.0264$

3. $56.1 \times 0.45 = 25.245$

$2.1 \times 0.9 = 1.89$

$0.724 \times 0.6 = 0.4344$

$0.46 \times 0.87 = 0.4002$

4. $4.95 \times 0.2 = 0.99$

$0.3 \times 7.8 = 2.34$

$9.12 \times 4.3 = 39.126$

$65.1 \times 0.25 = 16.275$

5. $3.21 \times 4.7 = 15.187$

$0.8 \times 12.5 = 10.0$

$10.16 \times 2.21 = 22.3336$

$24.99 \times 0.52 = 12.8988$
Geometry: Perimeter and Area

The distance around a figure is called its perimeter. The perimeter is measured in units of length. The area of a figure is the number of square units the figure contains.

Find the perimeter and area of a rectangle with a length of 5 cm and a width of 3 cm.

1. **To find the perimeter:**
 - **Add the sides of the figure.**
 - **Use the formula** $P = 2l + 2w$
 - $l = length$
 - $w = width$
 - $P = perimeter$
 - $5 \text{ cm} + 3 \text{ cm} + 5 \text{ cm} + 3 \text{ cm} = 16 \text{ cm}$
 - or
 - $= (2 \times 5) + (2 \times 3)$
 - $= 10 + 6$
 - $= 16 \text{ cm}$

2. **To find the area:**
 - **Use the formula** $A = l \times w$
 - $l = length$
 - $w = width$
 - $A = area$
 - $= 5 \text{ cm} \times 3 \text{ cm}$
 - $= 15 \text{ cm}^2$

Find the perimeter and area of each rectangle with the given length and width.

1. $l = 9 \text{ in.}$
 - $w = 10 \text{ in.}$
 - $P = _ _ \text{ in.}$
 - $A = _ _ \text{ in.}^2$
 - $l = 3.5 \text{ ft.}$
 - $w = 2 \text{ ft.}$
 - $P = _ _ \text{ ft.}$
 - $A = _ _ \text{ ft.}^2$
 - $l = 5 \text{ m}$
 - $w = 4.5 \text{ m}$
 - $P = _ _ \text{ m}$
 - $A = _ _ \text{ m}^2$

2. $l = 10.25 \text{ in.}$
 - $w = 4 \text{ in.}$
 - $P = _ _ \text{ in.}$
 - $A = _ _ \text{ in.}^2$
 - $l = 30 \text{ yd.}$
 - $w = 15 \text{ yd.}$
 - $P = _ _ \text{ yd.}$
 - $A = _ _ \text{ yd.}^2$
 - $l = 7.3 \text{ cm}$
 - $w = 3.7 \text{ cm}$
 - $P = _ _ \text{ cm}$
 - $A = _ _ \text{ cm}^2$

Find the perimeter and area of each figure.

3. **3.**
 - $P = _ _ \text{ in.}$
 - $A = _ _ \text{ in.}^2$

 - $P = _ _ \text{ ft.}$
 - $A = _ _ \text{ ft.}^2$

 - $P = _ _ \text{ cm}$
 - $A = _ _ \text{ cm}^2$
Student Evaluation/Reflection Form
Complete this form after finishing the summer math break packet.

1. How would you rate the difficulty of the problems in general throughout the summer math break packet? Please rate on a scale from 1-10, with 1 being the easiest and 10 being the hardest.

 1 2 3 4 5 6 7 8 9 10
 (easiest) (hardest)

2. What types of problems in the challenge were the most difficult and why?

 __
 __
 __

3. What types of problems in the challenge were the easiest and why?

 __
 __
 __

4. When did you complete the challenge? How did you pace yourself when completing the challenge? (Did you do it every day, once a week, completed it in a few days?)

 __
 __
 __

5. Please tell me a little bit about yourself. What do you like to do for fun? Are you apart of any sports, music, or activities?

 __
 __
 __

6. Please tell me about your family. Who do you live with? How many siblings do you have? What are your favorite things to do with your family?

 __
 __
 __

Thank you for taking the time to complete this evaluation/reflection!
I really appreciate your input!
Guardian Letter/Reflection Form

1. How difficult did you feel this summer math break packet was for your student? Was it too easy or too difficult or somewhere in the middle? ¿Qué tan difícil sintió que fue este paquete de vacaciones de matemáticas para su estudiante? ¿Fue demasiado fácil o demasiado difícil o en algún lugar en el medio?

2. How would you describe your student as a math student? Does he/she feel confident? Do they typically have higher or lower grades in math? Do they enjoy math or does math make them frustrated? ¿Cómo describirías a tu estudiante como un estudiante de matemáticas? ¿Se siente confiado? ¿Tienen típicamente calificaciones más altas o más bajas en matemáticas? ¿Les gustan las matemáticas o las matemáticas los frustran?

3. Please take a moment to tell me about your child. What does your child like to do? What are their talents? Feel free to share anything that you think would be helpful for me to know as we begin the 2019-2020 school year. Tómese un momento para contarme sobre su hijo. ¿Qué le gusta hacer a tu hijo? ¿Cuáles son sus talentos? Siéntase libre de compartir cualquier cosa que crea que sería útil para mí saber al comenzar el año escolar 2019-2020.

Student Name: ___________________________ Preferred Name: ___________________________

Parent/Guardian(s) names: ___________________________

Parent/Guardian(s) emails: ___________________________

Parent/Guardian(s) phone numbers: ___________________________

Student and Parent/Guardian Declaration

I have completed this packet to the best of my ability and am prepared to turn it in on August 19th, 2019.

__ __
Student Signature Parent/Guardian Signature